Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

نویسنده

  • Anup Rao
چکیده

An arithmetic circuit is just like a boolean circuit, except that the gates are either multiplication or addition gates, and the inputs are either variables or constants. Formally, it is a directed acyclic graph where every vertex has in-degree (aka fan-in) 2 or 0, each vertex (aka gate) of in-degree 0 is labeled by a variable or a field element, and every other vertex is labeled either + or ×. The fan-out of a gate is its out-degree. We say that a circuit computes the polynomial p(X1, . . . , Xn) if there is gate in the circuit whose evaluation gives the polynomial p(X1, . . . , Xn). Note that although every function from Fn 2 → F2 can be represented as a polynomial, and multiplication and addition (over F2) can be used to simulate any boolean function on 2 bits, it is harder to design a small arithmetic circuit for computing a particular polynomial than it is to design a boolean circuit that computes the corresponding function. This is because many polynomials can evaluate to the same function on F2 → F2. For example, the polynomial (X + Y )(X + Z) evaluates to the same function as the polynomial X + Y + Z + Y Z, so if you want to compute the function X + Y + Z + Y Z, you can do it with three gates, even though computing the polynomial requires 4 gates. A boolean circuit can choose to evaluate the “easiest” polynomial, and so be of smaller size. Indeed, this restriction allows us to prove stronger lower bounds on arithmetic circuits, and gives us more techniques to attack them. Suppose we want to compute the polynomial Xd. This can be done by repeatedly squaring X with a circuit of size log d. It is easy to see that this construction is tight: each additional gate can at most double the degree of the polynomials computed by the circuit, so at least log d multiplications are needed to get degree d. What about if we want a circuit that simultaneously computes each of the polynomials Xd 1 , X d 2 , X d 3 , . . . , X d n? One way to do this is to compute each one separately, for a total size of n log d. Is this the best one can do?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

On the total version of geometric-arithmetic index

The total version of geometric–arithmetic index of graphs is introduced based on the endvertex degrees of edges of their total graphs. In this paper, beside of computing the total GA index for some graphs, its some properties especially lower and upper bounds are obtained.

متن کامل

Geometric-Arithmetic Index of Hamiltonian Fullerenes

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011